воскресенье, 11 декабря 2016 г.

Turbo Pascal та Borland Pascal

Turbo, а пізніше Borland Pascal— це одна з найвдаліших та найпоширеніших реалізацій мови Pascal, створена компанією Borland. Turbo Pascal — розширення американського стандарту (ANSI Pascal), яке враховує архітектурні особливості MS-DOS та MS Windows і постачається зі значними за обсягом і різноманітності пакетами стандартних процедур. Такі принципові нововведення, як апарат модулів і об'єктно-орієнтовані засоби полегшують конструювання великих програмних систем на основі технології модульного програмування.

Компілятор Turbo Pascal працює за однопрохідною схемою, реалізує функції редагування зв'язків, формуючи на виході готовий до виконання об'єктний код. Компілятор може здійснювати широкий набір локальних оптимізацій (згортання констант, виключення невикористовуваного коду і зайвих даних, оптимізація операцій і т. д.), що сприяє високій ефективності кінцевих програм.

Система Turbo Pascal є інтегрованим середовищем (IDE), яке налічує ряд компонентів, що в сукупності підтримують усі види робіт зі створення програм. Система містить універсальний текстовий редактор, компілятор вхідної мови, редактор зв'язків і вбудований символьний зневаджувач. Багатовіконний інтерфейс із розвинутою системою меню і досконалою довідковою системою забезпечує високу продуктивність праці програміста.

Borland Pascal 7.0, 7.01 компілює програми для DOS та ОС Windows 1.0, Windows 2.0, Windows 3.x, а також містить ряд додаткових утиліт та компіляторів на кшталт: Turbo Pascal for Windows (TPW), Borland Pascal for Windows (BPW), редактор ресурсів (іконок, графічних файлів, курсорів тощо) та інші.

Історія виникнення і особливості мови

Першим компілятором мови Pascal є ETH Pascal, створений у 1970-му. Назва ETH походить від назви інституту німецькою Eidgenössische Technische Hochschule Zürich (українською Федеральна вища технічна школа Цюріха), де він був розроблений. Творцем мови є Ніклаус Вірт. Наприкінці того ж року Вірт оприлюднив перший офіційний опис мови, синтаксису та семантики. Нова версія мови побачила світ у 1972 році. Тоді ж Вірт та його англійський колега Чарльз Ентоні Гоар випустили аксіоматичний опис мови Pascal.
У 1969 році Вірт доручає розробку компілятора одному зі своїх студентів (Е. Марм'є). На той момент Марм'є володів лише Фортраном (Fortran) і писав компілятор виключно на цій мові. Після написання компілятор Pascal був переписаний на самому собі. Як згадував потім Вірт, вибір Фортрана був серйозною помилкою, бо він не міг адекватно представляти складні структури даних компілятора Pascal, що лише заплутувало програму.
Наступна спроба створення компілятору почалася з чіткого формулювання на описі (1970 року) самого Паскалю. Синтаксичний аналіз нового однопрохідного компілятору реалізовувався за допомогою рекурсії. Тепер команду розробників склали: У. Амман, Е. Марм'є, Р. Шилд. Після того як компілятор був написаний на ще невідомій мові, Шилд поїхав додому, де він протягом двох тижнів вручну транслював програму у допоміжну низькорівневу мову. Отже, в середині 1970 року компілятор ETH Pascal був готовий.
ETH Pascal був цікавий насамперед тим, що став він однією з перших реалізацій мов високого рівня написаних на самій собі, на два роки випередивши компілятор Сі. У 1973 році була створена абстрактна Pascal-машина (P-машина), яка виконувала спеціальний P-код. Щоб вирішити проблему сумісності компілятора, Вірт вирішив скористатися перевіреними часом методами інтерпретаціі. Найвідомішими з них рішеннями, які передували P-коду, можна назвати реалізацію мови Snobol-4 (Р. Грісуолдом, у 1967 році), де як код абстрактної машини використовувалася мова SIL (System Implementation Language).
Початкова мета розробки мови диктувалася потребою інструмента «для навчання програмуванню як систематичній дисципліні». Pascal належить до Algol-подібних мов програмування, оскільки використовує семантику Algol-ла. Однак Pascal мав суттєве удосконалення — жорстку типізацію. Це означало, що присвоювання можна було виконувати лише для змінних, що належать до одного типу (одночасно вказувались правила, за якими типи вважались однаковими). Це удосконалення суттєво покращило стиль програмування, оскільки значну частину помилок вдавалось виявити ще на етапі компіляції — що збільшує надійність програм.
Однак мова розроблялась як дослідницький проект і первісний Pascal був мало придатний для написання великих проектів, оскільки програму не можна було скласти з кількох програмних частин — просто не було передбачено такої можливості. Але ця мова програмування швидко завоювала популярність у навчальних закладах при вивченні програмування. А коли з'явились діалекти мови де можливим було окреме компілювання програмних частин — Pascal став засобом написання великих програмних систем.
Існує ряд об'єктивних причин, які обумовили видатний успіх мови Pascal. Серед них у першу чергу потрібно вказати такі:
  • Мова в природній і елегантній формі відбила найважливіші сучасні концепції технології розробки програм.
  • Завдяки своїй компактності, концептуальній цілісності й ортогональності понять, а також вдалому оригінальному опису, запропонованому автором мови, Pascalвиявився дуже легким для вивчення й освоєння.
  • Незважаючи на відносну простоту мови, вона виявилась придатною для дуже широкого спектру застосунків, у тому числі для розробки дуже великих і складних програм, наприклад, операційних систем.
  • Pascal дуже технологічний для реалізації практично усіх, у тому числі і нетрадиційних, машинних архітектур. Стверджується, що розробка Pascal-транслятора «майже» не перевищує за трудомісткістю гарної дипломної роботи випускника ВНЗу.
  • Мова Pascal стандартизована в багатьох країнах, а у 1983 році було прийнято міжнародний стандарт (ISO 7185:1983).

Спадщина Pascal

Разом із популярністю мови стало відомим і ім'я Ніклауса Вірта. Працюючи у Швейцарському федеральному технічному інституті разом із своїми учнями і послідовниками удосконалював теорію мови програмування загального використання. Так у 1980 році зявилась Modula (хоча коли говорять Modula, мають на увазі Modula-2). Modula-2 стала завершенням розвитку лінії структурного програмування. У 1990 році — з'явився Oberon що вже використовував принципи ООП (хоча об'єктно-орієнтоване програмування було можливим вже у версії 5.5 однієї з найпопулярніших реалізацій мови — Turbo Pascal).
Тепер можна говорити про існування родини Pascal-подібних мов, до яких належать Pascal, Modula-2, Oberon, Oberon-2, ActiveOberon, Component Pascal.
Не так давно з'явилась нова мова з цієї великої родини — Zonnon для .NET. Вона, як і її попередники, була створена у Швейцарському федеральному технологічному інституті у Цюріху. Основний наголос у ній зроблено на простоту, ясний синтаксис та модульність. Zonnon увібрав у себе риси Active Oberon та C#. Мова Zonnon додає паскалю нові особливості, включаючи процеси в об'єктах, перевантаження операторів та обробку виключних ситуаці.

Структура програми

Враховуючи те, що для імен можна застосовувати тільки латинські літери, всі назви параметрів подані англійською.
Умовні позначення:
<>— обов'язковий параметр;
[]— не обов'язковий параметр.
Опис директив (макросів):
{$<directive><switch>, <directive><switch>,..}
Місце опису директив (макросів) є довільним. Деякі директиви мають більш, ніж одне значення. Наприклад:
$I <filename.pas> та $I<switch>;
$L<switch> $L<filename.obj>.
Більшість директив має однакову форму запису, але є й вийнятки, на кшталт:
$M <value>, <value>, <value>;
$IFDEF <name>; $ELSE; $INC.
Приклад:
{$A-,B-,D+,E-,F-,G-,I-,L+,N+,O-,P-,Q+,R-,S+,T-,V+,X+,Y+}
{$M 16384,0,655360}
{$I i8042.pas}
var f: File;
begin
 Assign(f, 'file');
 {$I-}
 Reset(f, $200);
 {$I+}
 if IOResult<> 0 then 
  Rewrite(f, $200);
end.
Назва програми (ім'я головного модулю):
program <name>[(input, output)];
Приклад:
{$X+}
program t80c187;

function New: ByteBool;
begin
end;

begin
 t80c187.New;
 New;
end.
Підключення відкомпільованих модулів:
uses <unitNam0>, <unitNam1>,.. ;
Порядок підключення оверлейних модулів інший, та здійснюється за допомогою директиви $O.
Приклад:
uses crt, dos, vbe30;
var
   screen: Text;

begin
 Crt.AssignCrt(screen);
 AssignCrt(screen);
end.
Опис міток:
Мітка— ціле число від 0 до 9999.
label <number0>, <number1>,..;
Приклад:
label 0, 9999;

begin
 0: goto 9999;
 9999: goto 0;
end.
Опис констант:
const <name0>=<value>; <name1>=<value>,.. ;
Опис статичних змінних:
const <name3>:<type>=<value>; <name4>:<type>=<value>,.. ;
Якщо статична змінна описана в процедурі або функції, то після виклику останньої стек для змінної не резервується (місце вже є в самому коді), що дозволяє заощадити час.
Опис нових типів (в тому числі процедурних і функціональних), структур та об'єктів:
 type
   <name_0>= record
   end;
   <name_1>= <type or range>;
   <name_2>= object[(father's name)]
   [private]
   <variables or methods>
   [public]
   <variables or methods>
   end;
Опис змінних:
var <name0>, <name1>,.. : <type or range>;
var <name3>, <name4>,.. : Byte absolute <segment: offset>;
Приклади:
type
    Pointer= record
    case Byte of
     $00: (ofs, seg: Word);
     $01: (fulladdr: LongInt);
    end;

    _RGBA= record
     red, green, blue: Single;
     alpha: Single;
    end;

    _VideoBuffer= array [16*12] of _RGBA;

    _Beer= (BEST, BESTER, MORE);

    _Element= ^_List;

    _List= record
     prev: _Element;
     data: _Beer;
     next: _Element;
    end;

    _SimpleProc= Procedure;
    _ByteFunc= Function: Byte;

    _New= object
    private
     right, bottom: Integer;
     procedure Destroy;(*or destructor..*)
    public
     left, top: Integer;
     width, height: Word;
     procedure Create;(*or constructor..*)
     procedure Free;
    end;

    _Newest= object(_New)
     procedure Create;
     procedure Free;
    end;

const
     CNT= $40;
     svar_0: _Beer= MORE;
     svar_1: Byte= 0;
     svar_0_addr: Pointer= (ofs: Ofs(svar_0); seg: Seg(svar_1));
     svar_1_addr: Pointer= (fulladdr: LongInt(@svar_1));

var
   counter: _Beer;
   temp0, temp1, temp2: 0..Byte('2');
   a: array [0..0] of array [Byte] of Byte;
   b: array (.0..0, Byte.) of Word;(*(.= [    .)= ]*)
   intVar: Word;
   proc: Procedure (const BITS: Byte);
   float10: Extended;
   float4: Single;
   divZeroErrorAddr: LongInt absolute $0000: $0000;
   mode: LongInt absolute $0040: $0049;
   crtMode: LongInt absolute mode;

procedure _New.Create; assembler;
asm
end;

procedure _New.Destroy; assembler;
asm
end;

procedure _New.Free;
begin
end;

procedure _Newest.Create;
begin
 inherited Create;
end;

procedure _Newest.Free;
begin
 inherited Free;
end;

begin
end.
Опис процедур та функцій (конструкторів та деструкторів):
procedure <identifier> [parameters]; [directives]
function <identifier> [parameters]: <type>; [directives]
Приклад:
const
     test: Word= $0001;

var
   procCall: Procedure (var DATA);
   temp: Byte;

procedure SwitchLowBytes(var DATA); far;
begin
 temp:= Byte(Ptr(Seg(DATA), Ofs(DATA)+ 1)^);
 Byte(Ptr(Seg(DATA), Ofs(DATA)+ 1)^):= Byte(Ptr(Seg(DATA), Ofs(DATA))^);
 Byte(Ptr(Seg(DATA), Ofs(DATA))^):= temp;
end;

procedure switch_low_bytes(var data);
type
    _bytes: array [0..1] of Byte;

begin
 temp:= _bytes(data)[0];
 _bytes(data)[0]:= _bytes(data)[1];
 _bytes(data)[1]:= temp;
end;


begin
 procCall:= SwitchLowBytes;
 WriteLn(test);
 procCall(test);
 WriteLn(test);
 switch_low_bytes(test);
 WriteLn(test);
end.
У програмі повинно бути як мінімум два оператори — це begin та end. Після кожного рядка необхідно ставити «;» (це правило не стосується операторів після яких розміщено зарезервоване слово «end», «begin», «else», вбудованого асемблеру тощо).
Кількість зарезервованих слів «begin» та «end» у програмі не обов'язково повинно збігатися.
Наприклад:
begin
 asm
 end;
end.
unit new;
 interface
 implementation
end.
type
    _HBrush= record
    end;
begin
end.
Присвоєння значення відбувається так:
<typed address>:= <typed address>;
<typed address>:= <value>;
Після останнього «end» необхідно поставити крапку «.»


Стандартні підпрограми і сталі

  • Abs(X) — обчислення абсолютного значення (модулю) Х.
  • ArcTan(X) — обчислення кута, тангенс якого дорівнює Х (тобто математичний arctg(X)), значення кута подано в радіанах і може знаходитися в діапазоні від -π/2 до π/2. Для перетворення значення кута з радіанної міри в градусну необхідно значення кута помножити на число 180/π. Результат має дійсний тип.
  • Cos(X) — обчислення косинуса Х, параметр задає значення кута в радіанах.
  • Exp(x) — обчислення значення експоненти аргументу (ex). Результат завжди має дійсний тип.
  • Frac(X) — знаходження дробової частини Х. Результат має дійсний тип.
  • Int(X) — знаходження цілої частини Х (дробова частина відкидається). Результат має дійсний тип.
  • Ln(x) — обчислюється натуральний логарифм аргументу. Результат має дійсний тип. За допомогою функцій Exp та Ln можна обчислити довільну степінь числа так: ab=Exp(b*Ln(a)), відповідно корінь можна подати так само a1/b (тобто корінь степіня b з a)=Exp(1/b*Ln(a)).
  • Pi — повертає значення числа p (3.1415926).
  • Sin(X) — обчислення синуса Х. Параметр задає значення кута в радіанах. Для перетворення значення кута з радіанної міри в градусну необхідно значення кута помножити на число 180/p. Результат має дійсний тип.
  • Sqr(X) — піднесення до квадрата значення Х. Тип результату збігається з типом параметра.
  • Sqrt(X) — обчислення квадратного кореня з Х. Тип результату дійсний.
  • Random — генерує значення випадкового числа з діапазону від 0 до 0.99. Тип результату дійсний.
  • Random(P) — генерує значення випадкового числа з діапазону від 0 до P. Тип результату цілий. Щоб випадкові числа були «більш випадковими», необхідно періодично змінювати базу генерації. Для цього використовується процедура Randomize, що дозволяє при кожному новому запуску програми отримувати різні випадкові числа.
Для величин перелічувальних типів (всі цілі, літерний та булівський) існують також декілька зручних стандартних функцій та процедур, наведених нижче:
  • Dec(x, [dx]) — процедура зменшує значення змінної Х на величину DX, а якщо параметр DX не заданий — на 1.
  • Inc(x, [dx]) — процедура збільшує значення змінної Х на величину DX, а якщо параметр DX не заданий — на 1.
  • Pred(X) — функція, що визначає попереднє значення для даного типа. Наприклад, Pred(5)=4, Pred(True)=False, Pred('B')='A'.
  • Succ(X) — функція, що визначає наступне значення для даного типа. Наприклад, Succ(5)=6, Succ(True)=False, Succ('A')='B'.
  • Odd(X) — число перевіряється на непарність. Результат дорівнює true, якщо аргумент непарний, і false — в протилежному випадку.